354 research outputs found

    Multiclass Semi-Supervised Learning on Graphs using Ginzburg-Landau Functional Minimization

    Full text link
    We present a graph-based variational algorithm for classification of high-dimensional data, generalizing the binary diffuse interface model to the case of multiple classes. Motivated by total variation techniques, the method involves minimizing an energy functional made up of three terms. The first two terms promote a stepwise continuous classification function with sharp transitions between classes, while preserving symmetry among the class labels. The third term is a data fidelity term, allowing us to incorporate prior information into the model in a semi-supervised framework. The performance of the algorithm on synthetic data, as well as on the COIL and MNIST benchmark datasets, is competitive with state-of-the-art graph-based multiclass segmentation methods.Comment: 16 pages, to appear in Springer's Lecture Notes in Computer Science volume "Pattern Recognition Applications and Methods 2013", part of series on Advances in Intelligent and Soft Computin

    The mixed problem for the Laplacian in Lipschitz domains

    Full text link
    We consider the mixed boundary value problem or Zaremba's problem for the Laplacian in a bounded Lipschitz domain in R^n. We specify Dirichlet data on part of the boundary and Neumann data on the remainder of the boundary. We assume that the boundary between the sets where we specify Dirichlet and Neumann data is a Lipschitz surface. We require that the Neumann data is in L^p and the Dirichlet data is in the Sobolev space of functions having one derivative in L^p for some p near 1. Under these conditions, there is a unique solution to the mixed problem with the non-tangential maximal function of the gradient of the solution in L^p of the boundary. We also obtain results with data from Hardy spaces when p=1.Comment: Version 5 includes a correction to one step of the main proof. Since the paper appeared long ago, this submission includes the complete paper, followed by a short section that gives the correction to one step in the proo

    Markov propagation of allosteric effects in biomolecular systems: application to GroEL–GroES

    Get PDF
    We introduce a novel approach for elucidating the potential pathways of allosteric communication in biomolecular systems. The methodology, based on Markov propagation of ‘information' across the structure, permits us to partition the network of interactions into soft clusters distinguished by their coherent stochastics. Probabilistic participation of residues in these clusters defines the communication patterns inherent to the network architecture. Application to bacterial chaperonin complex GroEL–GroES, an allostery-driven structure, identifies residues engaged in intra- and inter-subunit communication, including those acting as hubs and messengers. A number of residues are distinguished by their high potentials to transmit allosteric signals, including Pro33 and Thr90 at the nucleotide-binding site and Glu461 and Arg197 mediating inter- and intra-ring communication, respectively. We propose two most likely pathways of signal transmission, between nucleotide- and GroES-binding sites across the cis and trans rings, which involve several conserved residues. A striking observation is the opposite direction of information flow within cis and trans rings, consistent with negative inter-ring cooperativity. Comparison with collective modes deduced from normal mode analysis reveals the propensity of global hinge regions to act as messengers in the transmission of allosteric signals

    Hardy Spaces on Weighted Homogeneous Trees

    Get PDF
    We consider an infinite homogeneous tree V endowed with the usual metric d defined on graphs and a weighted measure μ. The metric measure space (V, d, μ) is nondoubling and of exponential growth, hence the classical theory of Hardy spaces does not apply in this setting. We construct an atomic Hardy space H1(μ) on (V, d, μ) and investigate some of its properties, focusing in particular on real interpolation properties and on boundedness of singular integrals on H1(μ)

    \epsilon-regularity for systems involving non-local, antisymmetric operators

    Full text link
    We prove an epsilon-regularity theorem for critical and super-critical systems with a non-local antisymmetric operator on the right-hand side. These systems contain as special cases, Euler-Lagrange equations of conformally invariant variational functionals as Rivi\`ere treated them, and also Euler-Lagrange equations of fractional harmonic maps introduced by Da Lio-Rivi\`ere. In particular, the arguments presented here give new and uniform proofs of the regularity results by Rivi\`ere, Rivi\`ere-Struwe, Da-Lio-Rivi\`ere, and also the integrability results by Sharp-Topping and Sharp, not discriminating between the classical local, and the non-local situations

    Non-Redundant Spectral Dimensionality Reduction

    Full text link
    Spectral dimensionality reduction algorithms are widely used in numerous domains, including for recognition, segmentation, tracking and visualization. However, despite their popularity, these algorithms suffer from a major limitation known as the "repeated Eigen-directions" phenomenon. That is, many of the embedding coordinates they produce typically capture the same direction along the data manifold. This leads to redundant and inefficient representations that do not reveal the true intrinsic dimensionality of the data. In this paper, we propose a general method for avoiding redundancy in spectral algorithms. Our approach relies on replacing the orthogonality constraints underlying those methods by unpredictability constraints. Specifically, we require that each embedding coordinate be unpredictable (in the statistical sense) from all previous ones. We prove that these constraints necessarily prevent redundancy, and provide a simple technique to incorporate them into existing methods. As we illustrate on challenging high-dimensional scenarios, our approach produces significantly more informative and compact representations, which improve visualization and classification tasks

    Semantic distillation: a method for clustering objects by their contextual specificity

    Full text link
    Techniques for data-mining, latent semantic analysis, contextual search of databases, etc. have long ago been developed by computer scientists working on information retrieval (IR). Experimental scientists, from all disciplines, having to analyse large collections of raw experimental data (astronomical, physical, biological, etc.) have developed powerful methods for their statistical analysis and for clustering, categorising, and classifying objects. Finally, physicists have developed a theory of quantum measurement, unifying the logical, algebraic, and probabilistic aspects of queries into a single formalism. The purpose of this paper is twofold: first to show that when formulated at an abstract level, problems from IR, from statistical data analysis, and from physical measurement theories are very similar and hence can profitably be cross-fertilised, and, secondly, to propose a novel method of fuzzy hierarchical clustering, termed \textit{semantic distillation} -- strongly inspired from the theory of quantum measurement --, we developed to analyse raw data coming from various types of experiments on DNA arrays. We illustrate the method by analysing DNA arrays experiments and clustering the genes of the array according to their specificity.Comment: Accepted for publication in Studies in Computational Intelligence, Springer-Verla

    Local Interpretation Methods to Machine Learning Using the Domain of the Feature Space

    Full text link
    As machine learning becomes an important part of many real world applications affecting human lives, new requirements, besides high predictive accuracy, become important. One important requirement is transparency, which has been associated with model interpretability. Many machine learning algorithms induce models difficult to interpret, named black box. Moreover, people have difficulty to trust models that cannot be explained. In particular for machine learning, many groups are investigating new methods able to explain black box models. These methods usually look inside the black models to explain their inner work. By doing so, they allow the interpretation of the decision making process used by black box models. Among the recently proposed model interpretation methods, there is a group, named local estimators, which are designed to explain how the label of particular instance is predicted. For such, they induce interpretable models on the neighborhood of the instance to be explained. Local estimators have been successfully used to explain specific predictions. Although they provide some degree of model interpretability, it is still not clear what is the best way to implement and apply them. Open questions include: how to best define the neighborhood of an instance? How to control the trade-off between the accuracy of the interpretation method and its interpretability? How to make the obtained solution robust to small variations on the instance to be explained? To answer to these questions, we propose and investigate two strategies: (i) using data instance properties to provide improved explanations, and (ii) making sure that the neighborhood of an instance is properly defined by taking the geometry of the domain of the feature space into account. We evaluate these strategies in a regression task and present experimental results that show that they can improve local explanations

    Towards a computer aided diagnosis system dedicated to virtual microscopy based on stereology sampling and diffusion maps

    Get PDF
    An original strategy is presented, combining stereological sampling methods based on test grids and data reduction methods based on diffusion maps, in order to build a knowledge image database with no bias introduced by a subjective choice of exploration areas. The practical application of the exposed methodology concerns virtual slides of breast tumors
    corecore